Soil reaction (pH)

Soil reactivity is expressed in terms of pH and is a measure of the acidity or alkalinity of the soil. More precisely, it is a measure of hydrogen ion concentration in an aqueous solution and ranges in values from 0 to 14 (acidic to basic) but practically speaking for soils, pH ranges from 3.5 to 9.5, as pH values beyond those extremes are toxic to life forms.

Soil pH

At 25°C an aqueous solution that has a pH of 3.5 has 10-3.5 moles hydrogen ions per litre of solution (and also 10-10.5 mole/litre OH) . A pH of 7, defined as neutral, has 10−7 moles hydrogen ions per litre of solution and also 10−7 moles of OH per litre; since the two concentrations are equal, they are said to neutralise each other. A pH of 9.5 is 10-9.5 moles hydrogen ions per litre of solution (and also 10-2.5 mole per litre OH) . A pH of 3.5 has one million times more hydrogen ions per litre than a solution with pH of 9.5 (9.5 – 3.5 = 6 or 106) and is more acidic.
The effect of pH on a soil is to remove from the soil or to make available certain ions. Soils with high acidity tend to have toxic amounts of aluminium and manganese. Plants which need calcium need moderate alkalinity, but most minerals are more soluble in acid soils. Soil organisms are hindered by high acidity, and most agricultural crops do best with mineral soils of pH 6.5 and organic soils of pH 5.5.
In high rainfall areas, soils tend to acidity as the basic cations are forced off the soil colloids by the mass action of hydrogen ions from the rain as those attach to the colloids. High rainfall rates can then wash the nutrients out, leaving the soil sterile. Once the colloids are saturated with H+, the addition of any more hydrogen ions or aluminum hydroxyl cations drives the pH even lower (more acidic) as the soil is left with no buffering capacity. In extreme rainfall areas and high temperatures, the clay and humus may be washed out, further reducing the buffering capacity of the soil. In low rainfall areas, unleached calcium pushes pH to 8.5 and with the addition of exchangeable sodium, soils may reach pH 10. Beyond a pH of 9, plant growth is reduced. High pH results in low micro-nutrient mobility, but water-soluble chelates of those nutrients can supply the deficit. Sodium can be reduced by the addition of gypsum (calcium sulphate) as calcium adheres to clay more tightly than does sodium causing sodium to be pushed into the soil water solution where it can be washed out by an abundance of water.

Base saturation percentage

There are acid-forming cations (hydrogen and aluminium) and there are base-forming cations. The fraction of the base-forming cations that occupy positions on the soil colloids is called the base saturation percentage. If a soil has a CEC of 20 meq and 5 meq are aluminium and hydrogen cations (acid-forming), the remainder of positions on the colloids (20-5 = 15 meq) are assumed occupied by base-forming cations, so that the percentage base saturation is 15/20 x 100% = 75% (the compliment 25% is assumed acid-forming cations). When the soil pH is 7 (neutral), base saturation is 100 percent and there are no hydrogen ions stored on the colloids. Base saturation is almost in direct proportion to pH and except for its use in calculating the amount of lime needed to neutralize an acid soil, it is of little use.

Check Also

Soil Conservation

Soil conservation is an effort made by man to prevent soil erosion in order to …