Soil clays

Due to its high specific surface area and its unbalanced negative charges, clay is the most active mineral component of soil. It is a colloidal and most often a crystalline material. In soils, clay is defined in a physical sense as any mineral particle less than two microns (2×10−6 inches) in effective diameter. Chemically, clay is a range of minerals with certain reactive properties. Clay is also a soil textural class. Many soil minerals, such as gypsum, carbonates, or quartz, are small enough to be classified physically as clay but chemically do not afford the same utility as do clay minerals.

Clay was once thought to be very small particles of quartz, feldspar, mica, hornblende or augite, but it is now known to be (with the exception of mica-based clays) a precipitate with a mineralogical composition that is dependent on but different from its parent materials and is classed as a secondary mineral. The type of clay that is formed is a function of the parent material and the composition of the minerals in solution. Mica-based clays result from a modification of the primary mica mineral in such a way that it behaves and is classed as a clay. Most clays are crystalline, but some are amorphous. The clays of a soil are a mixture of the various types of clay, but one type predominates.

Most clays are crystalline and most are made up of three or four planes of oxygen held together by planes of aluminium and silicon by way of ionic bonds that together form a single layer of clay. The spatial arrangement of the oxygen atoms determines clay’s structure. Half of the weight of clay is oxygen, but on a volume basis oxygen is ninety percent. The layers of clay are sometimes held together through hydrogen bonds or potassium bridges and as a result swell less in the presence of water. Other clays, such as montmorillonite, have layers that are loosely attached and will swell greatly when water intervenes.

There are three groups of clays:

  1. Crystalline alumino-silica clays: montmorillonite, illite, vermiculite, chlorite, kaolinite.
  2. Amorphous clays: young mixtures of silica (SiO2-OH) and alumina (Al(OH)3) which have not had time to form regular crystals.
  3. Sesquioxide clays: old, highly leached clays which result in oxides of iron, aluminium and titanium.

Check Also

Soil Conservation

Soil conservation is an effort made by man to prevent soil erosion in order to …