Humus refers to organic matter that has been decomposed by bacteria, fungi, and protozoa to the final point where it is resistant to further breakdown. Humus usually constitutes only five percent of the soil or less by volume, but it is an essential source of nutrients and adds important textural qualities crucial to soil health and plant growth. Humus also hold bits of undecomposed organic matter which feed arthropods and worms which further improve the soil. Humus has a high cation exchange capacity that on a dry weight basis is many times greater than that of clay colloids. It also acts as a buffer, like clay, against changes in pH and soil moisture.

Humic acids and fulvic acids, which begin as raw organic matter, are important constituents of humus. After the death of plants and animals, microbes begin to feed on the residues, resulting finally in the formation of humus. With decomposition, there is a reduction of water-soluble constituents including cellulose and hemicellulose and nutrients such as nitrogen, phosphorus, and sulfur. As the residues break down, only complex molecules made of aromatic carbon rings, oxygen and hydrogen remain in the form of humin, lignin and lignin complexes as humus. While the structure of humus has few nutrients, it is able to attract and hold cation and anion nutrients by weak bonds that can be released in response to changes in soil pH.

Lignin is resistant to breakdown and accumulates within the soil. It also reacts with amino acids, which further increases its resistance to decomposition, including enzymatic decomposition by microbes. Fats and waxes from plant matter have some resistance to decomposition and persist in soils for a while. Clay soils often have higher organic contents that persist longer than soils without clay as the organic molecules adhere to and are stabilised by the clay. Proteins normally decompose readily, but when bound to clay particles, they become more resistant to decomposition. Clay particles also absorb the enzymes exuded by microbes which would normally break down proteins. The addition of organic matter to clay soils can render that organic matter and any added nutrients inaccessible to plants and microbes for many years. High soil tannin (polyphenol) content can cause nitrogen to be sequestered in proteins or cause nitrogen immobilisation.

Humus formation is a process dependent on the amount of plant material added each year and the type of base soil. Both are affected by climate and the type of organisms present. Soils with humus can vary in nitrogen content but typically have 3 to 6 percent nitrogen. Raw organic matter, as a reserve of nitrogen and phosphorus, is a vital component affecting soil fertility. Humus also absorbs water, and expands and shrinks between dry and wet states, increasing soil porosity. Humus is less stable than the soil’s mineral constituents, as it is reduced by microbial decomposition, and over time its concentration diminshes without the addition of new organic matter. However, humus may persist over centuries if not millennia.

Check Also

Soil Conservation

Soil conservation is an effort made by man to prevent soil erosion in order to …