Study of soil – History

Studies concerning soil fertility

The history of the study of soil is intimately tied to our urgent need to provide food for ourselves and forage for our animals. Throughout history, civilizations have prospered or declined as a function of the availability and productivity of their soils.
The Greek historian Xenophon (450–355 B.C.) is credited with being the first to expound upon the merits of green-manuring crops: “But then whatever weeds are upon the ground, being turned into earth, enrich the soil as much as dung.” Columella’s “Husbandry,” circa 60 A.D., was used by 15 generations (450 years) under the Roman Empire until its collapse. From the fall of Rome to the French Revolution, knowledge of soil and agriculture was passed on from parent to child and as a result, crop yields were low. During the European Dark Ages, Yahya Ibn_al-‘Awwam’s handbook guided the people of North Africa, Spain and the Middle East with its emphasis on irrigation; a translation of this work was finally carried to the southwest of the United States.
Experiments into what made plants grow first led to the idea that the ash left behind when plant matter was burned was the essential element but overlooked the role of nitrogen, which is not left on the ground after combustion. In about 1635, the Flemish chemist Jan Baptist van Helmont thought he had proved water to be the essential element from his famous five years’ experiment with a willow tree grown with only the addition of rainwater. His conclusion came from the fact that the increase in the plant’s weight had been produced only by the addition of water, with no reduction in the soil’s weight. John Woodward (d. 1728) experimented with various types of water ranging from clean to muddy and found muddy water the best, and so he concluded that earthy matter was the essential element. Others concluded it was humus in the soil that passed some essence to the growing plant. Others held that the vital growth principal was something passed from dead plants or animals to the new plants. At the start of the 18th century, Jethro Tull demonstrated that it was beneficial to cultivate the soil, but his opinion that the stirring made the fine parts of soil available for plant absorption was erroneous.
As chemistry developed, it was applied to the investigation of soil fertility. The French chemist Antoine Lavoisier showed in about 1778 that plants and animals must “combust” oxygen internally to live and was able to deduce that most of the 165-pound weight of van Helmont’s willow tree derived from air. It was the French agriculturalist Jean-Baptiste Boussingault who by means of experimentation obtained evidence showing that the main sources of carbon, hydrogen and oxygen for plants were the air and water. Justus von Liebig in his book Organic Chemistry in its Applications to Agriculture and Physiology (published 1840), he asserted that the chemicals in plants must have come from the soil and air and that to maintain soil fertility, the used minerals must be replaced. Liebig nevertheless believed the nitrogen was supplied from the air. The enrichment of soil with guano by the Incas was rediscovered in 1802, by Alexander von Humboldt. This led to its mining and that of Chilean nitrate and to its application to soil in the United States and Europe after 1840.
The work of Liebig was a revolution for agriculture, and so other investigators started experimentation based on it. In England John Bennet Lawes and Joseph Henry Gilbert worked in the Rothamsted Experimental Station, founded by the former, and discovered that plants took nitrogen from the soil, and that salts needed to be in an available state to be absorbed by plants. Their investigations also produced the “superphosphate”, consisting in the acid treatment of phosphate rock. This led to the invention and use of salts of potassium (K) and nitrogen (N) as fertilizers. Finally, the chemical basis of nutrients delivered to the soil in manure was understood and in the mid-19th century chemical fertilisers were applied. The dynamic interaction of soil and its life forms awaited discovery.
In 1856 J. T. Way discovered that ammonia contained in fertilisers was transformed into nitrates, and twenty years later R. W. Warington proved that this transformation was done by living organisms. In 1890 Sergei Winogradsky announced he had found the bacteria responsible for this transformation.
It was known that certain legumes could take up nitrogen from the air and fix it to the soil. The development of bacteriology towards the end of the 19th century led to an understanding of the role played in nitrogen fixation by bacteria. The symbiosis of bacteria and leguminous roots, and the fixation of nitrogen by the bacteria, were simultaneously discovered by German agronomist Hermann Hellriegel and Dutch microbiologist Martinus Beijerinck.
Crop rotation, mechanisation, chemical and natural fertilisers led to a doubling of wheat yields in Western Europe between 1800 and 1900.

Studies concerning soil formation

The scientists who studied the soil in connection with agricultural practices had considered it mainly as a static substrate. However, soil is the result of evolution from more ancient geological materials. Other scientists later began to study soil genesis and as a result also soil types and classifications.
In 1860, in Mississippi, Eugene W. Hilgard studied the relationship among rock material, climate, and vegetation, and the type of soils that were developed. He realised that the soils were dynamic, and considered soil types classification. Unfortunately his work was not continued. At the same time Vasily Dokuchaev was leading a team of soil scientists in Russia who conducted an extensive survey of soils, finding that similar basic rocks, climate and vegetation types lead to similar soil layering and types, and established the concepts for soil classifications. The work of this team was communicated to Western Europe in 1914 by a publication in German by K. D. Glinka, a member of the Russian team.
Curtis F. Marbut was influenced by the work of the Russian team, translated Glinka’s publication into English, and as he was placed in charge of the U. S. National Cooperative Soil Survey, applied it to a national soil classification system.

Check Also

Soil Conservation

Soil conservation is an effort made by man to prevent soil erosion in order to …