Of equal importance to the storage and movement of water in soil is the means by which plants acquire it and their nutrients. Ninety percent of water is taken up by plants as passive absorption caused by the pulling force of water evaporating (transpiring) from the long column of water that leads from the plant’s roots to its leaves. In addition, the high concentration of salts within plant roots creates an osmotic pressure gradient that pushes soil water into the roots. Osmotic absorption becomes more important during times of low water transpiration caused by lower temperatures (for example at night) or high humidity. It is the process that causes guttation.
Root extension is vital for plant survival. A study of a single winter rye plant grown for four months in one cubic foot of loam soil showed that the plant developed 13,800,000 roots a total of 385 miles in length and 2,550 square feet in surface area and 14 billion hair roots of 6,600 miles total length and 4,320 square feet total area, for a total surface area of 6,870 square feet (83 ft squared). The total surface area of the loam soil was estimated to be 560,000 square feet. In other words the roots were in contact with only 1.2% of the soil. Roots must seek out water as the unsaturated flow of water in soil can move only at a rate of up to 2.5 cm (0.98 in) per day; as a result they are constantly dying and growing as they seek out high concentrations of soil moisture.
Insufficient soil moisture to the point of wilting will cause permanent damage and crop yields will suffer. When grain sorghum was exposed to soil suction as low as 13.0 bar during the seed head emergence through bloom and seed set stages of growth, its production was reduced by 34%.