A horizontal layer of the soil, whose physical features, composition and age are distinct from those above and beneath, are referred to as a soil horizon. The naming of a horizon is based on the type of material of which it is composed. Those materials reflect the duration of specific processes of soil formation. They are labelled using a shorthand notation of letters and numbers which describe the horizon in terms of its colour, size, texture, structure, consistency, root quantity, pH, voids, boundary characteristics and presence of nodules or concretions. Few soil profiles have all the major horizons. Some may have only one horizon. The exposure of parent material to favourable conditions produces mineral soils that are marginally suitable for plant growth. That growth often results in the accumulation of organic residues. The accumulated organic layer called the O horizon produces a more active soil due to the effect of the organisms that live within it. Organisms colonise and break down organic materials, making available nutrients upon which other plants and animals can live. After sufficient time, humus moves downward and is deposited in a distinctive organic surface layer called the A horizon.
Read More »Soil
Climate and organics
The production, accumulation and degradation of organic matter are greatly dependent on climate. Temperature, soil moisture and topography are the major factors affecting the accumulation of organic matter in soils. Organic matter tends to accumulate under wet or cold conditions where decomposer activity is impeded by low temperature or excess moisture which results in anaerobic conditions. Excessive slope may encourage the erosion of the top layer of soil which holds most of the raw organic material that will eventually become humus.
Read More »Humus
Humus refers to organic matter that has been decomposed by bacteria, fungi, and protozoa to the final point where it is resistant to further breakdown. Humus usually constitutes only five percent of the soil or less by volume, but it is an essential source of nutrients and adds important textural qualities crucial to soil health and plant growth. Humus also hold bits of undecomposed organic matter which feed arthropods and worms which further improve the soil. Humus has a high cation exchange capacity that on a dry weight basis is many times greater than that of clay colloids. It also acts as a buffer, like clay, against changes in pH and soil moisture. Humic acids and fulvic acids, which begin as raw organic matter, are important constituents of humus. After the death of plants and animals, microbes begin to feed on the residues, resulting finally in the formation of humus. With decomposition, there is a reduction of water-soluble constituents including cellulose and hemicellulose and nutrients such as nitrogen, phosphorus, and sulfur. As the residues break down, only complex molecules made of aromatic carbon rings, oxygen and hydrogen remain in the form of humin, lignin and lignin complexes as humus. While the structure of humus has few nutrients, it is able to attract and hold cation and anion nutrients by weak bonds that can be released in response to changes in soil pH. Lignin is resistant to breakdown and accumulates within the soil. It also reacts with amino acids, which further increases its resistance to decomposition, including enzymatic decomposition by microbes. Fats and waxes from plant matter have some resistance to decomposition and persist in soils for a while. Clay soils often have higher organic contents that persist longer than soils without clay as the organic molecules adhere to and are stabilised by the clay. Proteins normally decompose readily, but when bound to clay particles, …
Read More »Organic matter
The organic soil matter includes all the dead plant material and all creatures, live and dead. The living component of an acre of soil may include 900 lb of earthworms, 2400 lb of fungi, 1500 lb of bacteria, 133 lb of protozoa and 890 lb of arthropods and algae. Most living things in soils, including plants, insects, bacteria and fungi, are dependent on organic matter for nutrients and energy. Soils have varying organic compounds in varying degrees of decomposition. Organic matter holds soils open, allowing the infiltration of air and water, and may hold as much as twice its weight in water. Many soils, including desert and rocky-gravel soils, have little or no organic matter. Soils that are all organic matter, such as peat (histosols), are infertile. In its earliest stage of decomposition, the original organic material is often called raw organic matter. The final stage of decomposition is called humus.
Read More »Micronutrients
Micronutrients include iron, manganese, zinc, copper, boron, chlorine and molybdenum. The term refers to plants’ needs, not to their abundance in soil. They are required in very small amounts but are essential to plant health in that most are required parts of some enzyme system which speeds up plants’ metabolisms. They are generally available in the mineral component of the soil, but the heavy application of phosphates can cause a deficiency in zinc and iron by the formation of insoluble phosphates. Iron deficiency may also result from excessive amounts of heavy metals or calcium minerals (lime) in the soil. Excess amounts of soluble boron, molybdenum and chloride are toxic.
Read More »Sulfur
Most sulfur is made available to plants, like phosphorus, by its release from decomposing organic matter. Deficiencies may exist in some soils and if cropped, sulfur needs to be added. A 15-ton crop of onions uses up to 19 lb of sulfur and 4 tons of alfalfa uses 15 lb per acre. Sulfur abundance varies with depth. In a sample of soils in Ohio, United States, the sulfur abundance varied with depths, 0-6 inches, 6-12 inches, 12-18 inches, 18-24 inches in the amounts: 1056, 830, 686, 528 lb per acre respectively.
Read More »Magnesium
Magnesium is central to chlorophyll and aids in the uptake of phosphorus. The minimum amount of magnesium required for plant health is not sufficient for the health of forage animals. Magnesium is generally available, but is missing from some soils along the Gulf and Atlantic coasts of the United States due to leaching by heavy precipitation.
Read More »Calcium
Calcium is 1 percent by weight of soils and is generally available but may be low as it is soluble and can be leached. It is thus low in sandy and heavily leached soil or strongly acidic mineral soil. Calcium is supplied to the plant in the form of exchangeable ions and moderately soluble minerals. Calcium is more available on the soil colloids than is potassium because the common mineral calcite, CaCO3, is more soluble than potassium-bearing minerals
Read More »Phosphorus
Phosphorus is the second most critical plant nutrient. The soil mineral apatite is the most common mineral source of phosphorus. While there is on average 1000 lb of phosphorus per acre in the soil, it is generally in unavailable forms. The available portion of phosphorus is low as it is in the form of phosphates of low solubility. Total phosphorus is about 0.1 percent by weight of the soil, but only one percent of that is available. Of the part available, more than half comes from the mineralisation of organic matter. Agricultural fields may need to be fertilised to make up for the phosphorus that has been removed in the crop. When phosphorus does form solubilised ions of H2PO4–, they rapidly form insoluble phosphates of calcium or hydrous oxides of iron and aluminum. Phosphorus is largely immobile in the soil and is not leached but actually builds up in the surface layer if not cropped. The application of soluble fertilisers to soils may result in zinc deficiencies as zinc phosphates form. Conversely, the application of zinc to soils may immobilise phosphorus as zinc phosphate. Lack of phosphorus may interfere with the normal opening of the plant leaf stomata, resulting in plant temperatures 10 percent higher than normal. Phosphorus is most available when soil pH is 6.5 in mineral soils and 5.5 in organic soils.
Read More »Nitrogen losses
Usable nitrogen may be lost from soils when it is in the form of nitrate, as it is easily leached. Further losses of nitrogen occur by denitrification, the process whereby soil bacteria convert nitrate (NO3-) to nitrogen gas, N2 or N2O. This occurs when poor soil aeration limits free oxygen, forcing bacteria to use the oxygen in nitrate for their respiratory process. Denitrification increases when oxidisable organic material is available and when soils are warm and slightly acidic. Denitrification may vary throughout a soil as the aeration varies from place to place. The conversion of nitrate to gases causes nitrogen to be lost from the soil to the atmosphere. Denitrification may cause the loss of 10 to 20 percent of the available nitrates within a day and when conditions are favourable to that process, losses of up to 60 percent of nitrate applied as fertiliser may occur.[103] Ammonium volatilisation occurs when ammonium reacts chemically with an alkaline soil, converting NH4+ to NH3. The application of ammonium fertiliser to such a field can result in volatilisation losses of as much as 30 percent.
Read More »