Soil formation, or pedogenesis, is the combined effect of physical, chemical, biological and anthropogenic processes on soil parent material. Soil is said to be formed when organic matter has accumulated and colloids are washed downward, leaving deposits of clay, humus, iron oxide, carbonate, and gypsum. These constituents are moved (trans-located) from one level to another by water and animal activity. As a result, layers (horizons) form in the soil profile. The alteration and movement of materials within a soil causes the formation of distinctive soil horizons.
How soil formation proceeds is influenced by at least five classic factors that are intertwined in the evolution of a soil. They are: parent material, climate, topography (relief), organisms, and time. When reordered to climate, relief, organisms, parent material, and time, they form the acronym CROPT.
An example of the development of a soil would begin with the weathering of lava flow bedrock, which would produce the purely mineral-based parent material from which the soil texture forms. Soil development would proceed most rapidly from bare rock of recent flows in a warm climate, under heavy and frequent rainfall. Under such conditions, plants become established very quickly on basaltic lava, even though there is very little organic material. The plants are supported by the porous rock as it is filled with nutrient-bearing water that carries dissolved minerals from the rocks and guano. Crevasses and pockets, local topography of the rocks, would hold fine materials and harbour plant roots. The developing plant roots are associated with mycorrhizal fungi that assist in breaking up the porous lava, and by these means organic matter and a finer mineral soil accumulate with time.
Parent material
The mineral material from which a soil forms is called parent material. Rock, whether its origin is igneous, sedimentary, or metamorphic, is the source of all soil mineral materials and origin of all plant nutrients with the exceptions of nitrogen, hydrogen and carbon. As the parent material is chemically and physically weathered, transported, deposited and precipitated, it is transformed into a soil.
Typical soil mineral materials are:
Quartz: SiO2
Calcite: CaCO3
Feldspar: KAlSi3O8
Mica (biotite): K(Mg,Fe)3AlSi3O10(OH)2
Classification of parent material
Parent materials are classified according to how they came to be deposited. Residual materials are mineral materials that have weathered in place from primary bedrock. Transported materials are those that have been deposited by water, wind, ice or gravity. And cumulose material is organic matter that has grown and accumulates in place.
Residual soils are soils that develop from their underlying parent rocks and have the same general chemistry as those rocks. The soils found on mesas, plateaux, and plains are residual soils. In the United States as little as three percent of the soils are residual.
Most soils derive from transported materials that have been moved many miles by wind, water, ice and gravity.
Aeolian processes (movement by wind) are capable of moving silt and fine sand many hundreds of miles, forming loess soils (60–90 percent silt), common in the Midwest of North America and in Central Asia. Clay is seldom moved by wind as it forms stable aggregates.
Water-transported materials are classed as either alluvial, lacustrine, or marine. Alluvial materials are those moved and deposited by flowing water. Sedimentary deposits settled in lakes are called lacustrine. Lake Bonneville and many soils around the Great Lakes of the United States are examples. Marine deposits, such as soils along the Atlantic and Gulf Coasts and in the Imperial Valley of California of the United States, are the beds of ancient seas that have been revealed as the land uplifted.
Ice moves parent material and makes deposits in the form of terminal and lateral moraines in the case of stationary glaciers. Retreating glaciers leave smoother ground moraines and in all cases, outwash plains are left as alluvial deposits are moved downstream from the glacier.
Parent material moved by gravity is obvious at the base of steep slopes as talus cones and is called colluvial material.
Cumulose parent material is not moved but originates from deposited organic material. This includes peat and muck soils and results from preservation of plant residues by the low oxygen content of a high water table. While peat may form sterile soils, muck soils may be very fertile.
Weathering of parent material
The weathering of parent material takes the form of physical disintegrating and chemical decomposition and transformation.
Physical disintegration is the first stage in the transformation of parent material into soil. The freezing of absorbed water causes the physical splitting of material along a path toward the center of the rock, while temperature gradients within the rock can cause exfoliation of “shells”. Cycles of wetting and drying cause soil particles to be ground down to a finer size, as does the physical rubbing of material caused by wind, water, and gravity. Organisms also reduce parent material in size through the action of plant roots or digging on the part of animals.
Chemical decomposition results when minerals are made soluble by water or are changed in structure. The first three of the following list are solubility changes and the last three are structural changes.
The solution of salts in water results from the action of bipolar water on ionic salt compounds.
Hydrolysis is the transformation of minerals into polar molecules by the splitting of the mineral and the intervening water. This results in soluble acid-base pairs. For example, the hydrolysis of orthoclase-feldspar transforms it to acid silicate clay and basic potassium hydroxide, both of which are more soluble.
In carbonation, the reaction of carbon dioxide in solution with water forms carbonic acid. Carbonic acid will transform calcite into more soluble calcium bicarbonate.
Hydration is the inclusion of water in a mineral structure, causing it to swell and leaving it more stressed and easily decomposed.
Oxidation of a mineral compound causes it to swell and increase its oxidation number, leaving it more easily attacked by water or carbonic acid.
Reduction means the oxidation number of some part of the mineral is reduced, which occurs when oxygen is scarce. The reduction of minerals leaves them electrically unstable, more soluble and internally stressed and easily decomposed.
Of the above, hydrolysis and carbonation are the most effective.
Saprolite is a particular example of a residual soil formed from the transformation of granite, metamorphic and other types of bedrock into clay minerals. Often called “weathered granite”, saprolite is the result of weathering processes that include: hydrolysis, chelation from organic compounds, hydration (the solution of minerals in water with resulting cation and anion pairs) and physical processes that include freezing and thawing. The mineralogical and chemical composition of the primary bedrock material, its physical features, including grain size and degree of consolidation, and the rate and type of weathering transform the parent material into a different mineral. The texture, pH and mineral constituents of saprolite are inherited from its parent material.
Climate
Climate is the dominant factor in soil formation, and soils show the distinctive characteristics of the climate zones in which they form.[ Mineral precipitation and temperature are the primary climatic influences on soil formation.
The direct influences of climate include:
A shallow accumulation of lime in low rainfall areas as caliche
Formation of acid soils in humid areas
Erosion of soils on steep hillsides
Deposition of eroded materials downstream
Very intense chemical weathering, leaching, and erosion in warm and humid regions where soil does not freeze
Climate directly affects the rate of weathering and leaching. Soil is said to be formed when detectable layers of clays, organic colloids, carbonates, or soluble salts have been moved downward. Wind moves sand and smaller particles, especially in arid regions where there is little plant cover. The type and amount of precipitation influence soil formation by affecting the movement of ions and particles through the soil, and aid in the development of different soil profiles. Soil profiles are more distinct in wet and cool climates, where organic materials may accumulate, than in wet and warm climates, where organic materials are rapidly consumed. The effectiveness of water in weathering parent rock material depends on seasonal and daily temperature fluctuations. Cycles of freezing and thawing constitute an effective mechanism which breaks up rocks and other consolidated materials.
Climate also indirectly influences soil formation through the effects of vegetation cover and biological activity, which modify the rates of chemical reactions in the soil.
Topography
The topography, or relief, characterised by the inclination of the surface, determines the rate of precipitation runoff and rate of formation or erosion of the surface soil profiles. Steep slopes allow rapid runoff and erosion of the top soil profiles and little mineral deposition in lower profiles. Depressions allow the accumulation of water, minerals and organic matter and in the extreme, the resulting soils will be saline marshes or peat bogs. Intermediate topography affords the best conditions for the formation of an agriculturally productive soil.
Organisms
Soil is the most abundant ecosystem on Earth, but the vast majority of organisms in soil are microbes, a great many of which have not been described. There may be a population limit of around one billion cells per gram of soil, but estimates of the number of species vary widely. One estimate put the number at over a million species per gram of soil, although a later study suggests a maximum of just over 50,000 species per gram of soil. The total number of organisms and species can vary widely according to soil type, location, and depth.
Plants, animals, fungi, bacteria and humans affect soil formation (see soil biomantle and stonelayer). Animals, soil mesofauna and micro-organisms mix soils as they form burrows and pores, allowing moisture and gases to move about. In the same way, plant roots open channels in soils. Plants with deep taproots can penetrate many metres through the different soil layers to bring up nutrients from deeper in the profile. Plants with fibrous roots that spread out near the soil surface have roots that are easily decomposed, adding organic matter. Micro-organisms, including fungi and bacteria, effect chemical exchanges between roots and soil and act as a reserve of nutrients. Humans impact soil formation by removing vegetation cover with erosion as the result. Their tillage also mixes the different soil layers, restarting the soil formation process as less weathered material is mixed with the more developed upper layers.
Vegetation impacts soils in numerous ways. It can prevent erosion caused by excessive rain that results in surface runoff. Plants shade soils, keeping them cooler and slowing evaporation of soil moisture, or conversely, by way of transpiration, plants can cause soils to lose moisture. Plants can form new chemicals that can break down minerals and improve soil structure. The type and amount of vegetation depends on climate, topography, soil characteristics, and biological factors. Soil factors such as density, depth, chemistry, pH, temperature and moisture greatly affect the type of plants that can grow in a given location. Dead plants and fallen leaves and stems begin their decomposition on the surface. There, organisms feed on them and mix the organic material with the upper soil layers; these added organic compounds become part of the soil formation process.
Time
Time is a factor in the interactions of all the above. Over time, soils evolve features that are dependent on the interplay of other soil forming factors. Soil is always changing. It takes about 800 to 1000 years for a 2.5 cm (0.98 in) thick layer of fertile soil to be formed in nature. For example, recently deposited material from a flood exhibits no soil development because there has not been enough time for the material to form a structure that further defines soil. The original soil surface is buried, and the formation process must begin anew for this deposit. Over a period of between hundreds and thousands of years, the soil will develop a profile that depends on the intensities of biota and climate. While soil can achieve relative stability of its properties for extended periods, the soil life cycle ultimately ends in soil conditions that leave it vulnerable to erosion. Despite the inevitability of soil retrogression and degradation, most soil cycles are long.
Soil-forming factors continue to affect soils during their existence, even on “stable” landscapes that are long-enduring, some for millions of years. Materials are deposited on top or are blown or washed from the surface. With additions, removals and alterations, soils are always subject to new conditions. Whether these are slow or rapid changes depends on climate, topography and biological activity.