Overview

Darkened topsoil and reddish subsoil layers are typical in some regions.

On a volume basis a good quality soil is one that is 45% minerals (sand, silt, clay), 25% water, 25% air, and 5% organic material, both live and dead. The mineral and organic components are considered a constant while the percentages of water and air are variable where the increase in one is balanced by the reduction in the other.
Given time, the simple mixture of sand, silt, and clay will evolve into a soil profile which consists of two or more layers called horizons that differ in one or more properties such as texture, structure, colour, porosity, consistency, and reaction. The horizons differ greatly in thickness and generally lack sharp boundaries. Mature soil profiles in temperate regions may include three master horizons A, B and C. The A and B horizons are called the solum or “true soil” as most of the chemical and biological activity that has formed soil takes place in those two profiles.
The pore space of soil is shared by gases as well as water. The aeration of the soil influences the health of the soil’s flora and fauna and the movement of gases into and out of the soil.
Of all the factors influencing the evolution of soil, water is the most powerful due to its involvement in the solution, erosion, transportation, and deposition of the materials of which a soil is composed. The mixture of water and dissolved and suspended materials is called the soil solution. Water is central to the solution, precipitation and leaching of minerals from the soil profile. Finally, water affects the type of vegetation that grows in a soil, which in turn affects the development of the soil profile.
The most influential factor in stabilizing soil fertility are the soil colloidal particles, clay and humus, which behave as repositories of nutrients and moisture and act to buffer the variations of soil solution ions and moisture. Their contributions to soil nutrition are out of proportion to their part of the soil. Colloids act to store nutrients that might otherwise be leached from the soil or to release those ions in response changes to soil pH.
The greatest influence on plant nutrition is soil pH, which is a measure of the hydrogen ion (acid-forming) soil reactivity, and is in turn a function of the soil materials, precipitation level, and plant root behavior. Soil pH strongly affects the availability of nutrients.
Most nutrients, with the exception of nitrogen, originate from minerals and are stored in organic materials both live and dead and on colloidal particles. Some nitrogen originates from rain, but most of the nitrogen available in soils is the result of nitrogen fixation by bacteria. The action of microbes on organic matter and minerals may be to free nutrients for use, sequester them, or cause their loss from the soil by their volatilisation to gases or their leaching from the soil. The nutrients may be stored on soil colloids, and live or dead organic matter, but may not be accessible to plants due to extremes of pH.
The organic material of the soil has a powerful effect on its development, fertility, and available moisture. Following water and soil colloids, organic material is next in importance to soil’s formation and fertility.

Check Also

Soil Conservation

Soil conservation is an effort made by man to prevent soil erosion in order to …